Abstract

BackgroundInsecticide Treated Nets (ITNs) are an important tool for malaria control. ITNs are effective because they work on several parts of the mosquito feeding cycle, including both adult killing and repelling effects.MethodsUsing an elaborated description of the classic feeding cycle model, simple formulas have been derived to describe how ITNs change mosquito behaviour and the intensity of malaria transmission, as summarized by vectorial capacity and EIR. The predicted changes are illustrated as a function of the frequency of ITN use for four different vector populations using parameter estimates from the literature.ResultsThe model demonstrates that ITNs simultaneously reduce mosquitoes' lifespans, lengthen the feeding cycle, and by discouraging human biting divert more bites onto non-human hosts. ITNs can substantially reduce vectorial capacity through small changes to all of these quantities. The total reductions in vectorial capacity differ, moreover, depending on baseline behavior in the absence of ITNs. Reductions in lifespan and vectorial capacity are strongest for vector species with high baseline survival. Anthropophilic and zoophilic species are affected differently by ITNs; the feeding cycle is lengthened more for anthrophilic species, and the proportion of bites that are diverted onto non-human hosts is higher for zoophilic species.ConclusionThis model suggests that the efficacy of ITNs should be measured as a total reduction in transmission intensity, and that the quantitative effects will differ by species and by transmission intensity. At very high rates of ITN use, ITNs can generate large reductions in transmission intensity that could provide very large reductions in transmission intensity, and effective malaria control in some areas, especially when used in combination with other control measures. At high EIR, ITNs will probably not substantially reduce the parasite rate, but when transmission intensity is low, reductions in vectorial capacity combine with reductions in the parasite rate to generate very large reductions in EIR.

Highlights

  • Insecticide Treated Nets (ITNs) are an important tool for malaria control

  • ITNs reduce malaria transmission by vectors that bite during the night; they work by reducing the intensity of malaria transmission, the average number of infectious bites received by a person over some time period, called the entomological inoculation rate (EIR)

  • Successful feeding on humans protected by ITNs may occur if the net has holes, if the net is not properly deployed, or if the human is unprotected and bitten for short stretches during the night b) the mosquito lands on the net to bite a human, but dies from contact with the insecticide, with probability d c) the mosquito leaves the vicinity to search for another host, effectively restarting the host-seeking cycle, with probability r = 1 - s - d

Read more

Summary

Introduction

Insecticide Treated Nets (ITNs) are an important tool for malaria control. ITNs are effective because they work on several parts of the mosquito feeding cycle, including both adult killing and repelling effects. Insecticide-treated nets (ITNs) are regarded as standard tools for malaria control [1]. ITNs reduce malaria transmission by vectors that bite during the night; they work by reducing the intensity of malaria transmission, the average number of infectious bites received by a person over some time period, called the entomological inoculation rate (EIR). ITNs are effective at reducing EIR because they simultaneously affect several different aspects of the mosquito feeding cycle. ITNs kill mosquitoes that land on treated nets, with mortality reaching up to 90% [7]. Other effects have been reported, including a shift to outdoor biting, a shift in time of biting, or diversion to feed on other blood meal sources [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call