Abstract

We show a connection between global unconstrained optimization of a continuous function f and weak KAM theory for an eikonal-type equation arising also in ergodic control. A solution v of the critical Hamilton–Jacobi equation is built by a small discount approximation as well as the long time limit of an associated evolutive equation. Then v is represented as the value function of a control problem with target, whose optimal trajectories are driven by a differential inclusion describing the gradient descent of v. Such trajectories are proved to converge to the set of minima of f, using tools in control theory and occupational measures. We prove also that in some cases the set of minima is reached in finite time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.