Abstract

By means of known constitutive relations for the D and H fields, which include both electric quadrupole and magnetic dipole terms, an eigenvalue theory is developed for electromagnetic wave propagation in an absorbing chiral medium. The theory allows the polarization eigenvectors to be determined, which the medium supports, and also their refractive indices and absorption coefficients. Uniaxial and cubic crystals, as well as an ideal gas, are treated in this way, and expressions are derived for their circular birefringence and dichroism in terms of property tensors of the medium. These expressions are shown to be independent of the arbitrary origin to which the multipole moments are referred. The theory is also applicable to artificial chiral materials which are optically active in the microwave regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.