Abstract

AbstractWe interpret a boundary-value problem arising in a cell growth model as a singular Sturm–Liouville problem that involves a functional differential equation of the pantograph type. We show that the probability density function of the cell growth model corresponds to the first eigenvalue and that there is a family of rapidly decaying eigenfunctions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.