Abstract

A mathematical model for a three-tiered system consisting of solid, liquid, and gas is derived for studying the combustion of HMX propellants. The resulting nonlinear two-point boundary value problem is solved by Newton’s method with adaptive gridding techniques. In this study the burning rate is computed as an eigenvalue, which removes the uncertainty associated with employing evaporation and condensation rate laws in its evaluation. Results are presented for laser-assisted and self-deflagration of HMX monopropellants and are compared with experimental results. The burning rates are computed over a wide range of ambient pressures and compare well with experimental results from 1 to 90 atmospheres. The burning rate is found to be proportional to the pressure raised to the 0.82 power. Sensitivity of the burning rate to initial propellant temperature is calculated and found to be extremely low, in agreement with past theoretical predictions and experimental data. Results for laser-assisted combustion show a distinct primary and secondary flame separated by a dark zone, the length of which is dependent upon the incident laser flux intensity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.