Abstract

With the rapid development of computer, computer vision derived from computer vision has also made important progress in the field of image research. The extraction of image information is the most basic work in the field of image research. However, in the current environment, there is still a lack of effective methods to understand more complex image problems, such as image shape, material and illumination distribution in the environment. Eigenimage decomposition can be achieved by obtaining albedo eigenvalues and luminance eigenvalues. The color and illumination information of the image can be obtained more intuitively. Based on this, this paper proposes an intrinsic image decomposition method based on depth learning and probability graph model, in order to extract image information more accurately. Firstly, a deep convolution neural network is trained to decompose reflectivity image and shadow image. Then the conditional random field is used to optimize the reflectivity image and shadow image. The convolutional neural network designed in this paper obtains preliminary results through multi-scale architecture, deep supervision, step-by-step refinement of synthetic images and multi-stage training, which has been significantly improved compared with previous algorithms. Then the essential image and the corresponding gradient image are further optimized by conditional random field, and the eigenvalue image with richer details and clearer boundary can be obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call