Abstract
ABSTRACTInfluenza viruses grown in eggs for the purposes of vaccine generation often acquire mutations during egg adaptation or possess different glycosylation patterns than viruses circulating among humans. Here, we report that seasonal influenza virus vaccines possess an egg-derived glycan that is an antigenic decoy, with egg-binding MAbs reacting with a sulfated N-acetyllactosamine (LacNAc). Half of subjects that received an egg-grown vaccine mounted an antibody response against this egg-derived antigen. Egg-binding monoclonal antibodies specifically bind viruses grown in eggs, but not viruses grown in other chicken-derived cells, suggesting that only egg-grown vaccines can induce antiegg antibodies. Notably, antibodies against the egg antigen utilized a restricted antibody repertoire and possessed features of natural antibodies, as most antibodies were IgM and had a simple heavy-chain complementarity-determining region 3. By analyzing a public data set of influenza virus vaccine-induced plasmablasts, we discovered egg-binding public clonotypes that were shared across studies. Together, this study shows that egg-grown vaccines can induce antibodies against an egg-associated glycan, which may divert the host immune response away from protective epitopes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.