Abstract

ABSTRACTA kinetic Monte Carlo (kMC) scheme in the NPT ensemble (constant number of molecules, pressure and temperature) has been developed to determine accurate chemical potentials for all components in a homogeneous mixture. The simulation requires two moves: (1) a displacement move and (2) a volume change move. In the former, the mobility rate of a selected molecule is determined by its interaction with all the other molecules in the system and is moved to a random position within the simulation box, according to the Rosenbluth algorithm, without any rejections (entropic sampling). The volume change move is decided by a comparison between either the instant pressure or the partial average pressure (with long-range correction) and the specified pressure and is carried out much less frequently than the displacement move. We applied this NPT scheme to a number of mixtures in both the gaseous and liquid phases, and show that the derived chemical potentials are accurate and reproducible. The method is recommended for obtaining chemical potentials in mixtures that are required as input in a grand canonical ensemble simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.