Abstract

In this paper, we propose a computationally efficient decoding algorithm for space-time trellis codes in slow Rayleigh fading channels. The proposed scheme is based on a stack algorithm with two key ideas: (i) a variable stack size depending upon the signal-to-noise ratio to avoid the exhaustive search of paths and (ii) a normalized metric, which is defined as each cumulative path metric divided by its own length in the stack, to provide an appropriate comparison of the paths with different lengths. Simulation results demonstrate that the proposed algorithm achieves near-ML performance with significant reduction in complexity, compared with the conventional Viterbi algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.