Abstract

We present a novel variable-length code (VLC) construction which exhibits an inherent error correcting capability due to the exclusive presence of codewords with even Hamming weight. Besides error robustness, the proposed code construction features a similar codeword length distribution as Golomb-Rice codes, and therefore, in particular for sources with exponentially distributed symbols, has good source compression properties at the same time. We show that in a source channel coding framework with outer source encoding, inner channel encoding with a recursive convolutional code, and iterative decoding the proposed VLC construction can lead to significant performance improvements compared to fixed-length source encoding with optimized mappings. In particular, simulation results for the AWGN channel verify that for Gauss-Markov sources a performance close to the theoretical limit can be achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call