Abstract
We consider wave propagation problems that are modeled in the frequency-domain, and that need to be solved simultaneously for multiple frequencies within a fixed range. For this, a single shift-and-invert preconditioner at a so-called seed frequency is applied. The choice of the seed is crucial for the performance of preconditioned multi-shift GMRES and is closely related to the parameter choice for the Complex Shifted Laplace preconditioner. Based on a classical GMRES convergence bound, we present an analytic formula for the optimal seed parameter that purely depends on the original frequency range. The new insight is exploited in a two-level preconditioning strategy: A shifted Neumann preconditioner with minimized spectral radius is additionally applied to multi-shift GMRES. Moreover, we present a reformulation of the multi-shift problem to a matrix equation solved with, for instance, global GMRES. Here, our analysis allows for rotation of the spectrum of the linear operator. Numerical experiments for the time-harmonic visco-elastic wave equation demonstrate the performance of the new preconditioners.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.