Abstract

A finite-difference-time-domain (FDTD) algorithm for the efficient full-wave analysis of a comprehensive class of millimeter-wave and optical waveguide structures is described. The algorithm is based on a two-dimensional graded mesh combined with adequately formulated absorbing boundary conditions. This allows the inclusion of nearly arbitrarily shaped, fully or partially lateral open or shielded guiding structures with or without layers of finite metallization thickness. Moreover, lossy dielectrics and/or lossy conductors are included in the theory. The algorithm leads to a significant reduction in CPU time and storage requirements as compared with the conventional three-dimensional eigenvalue FDTD mesh formulation. Dispersion characteristic examples are calculated for structures suitable for usual integrated circuits, such as insulated image guides, ridge guides, dielectric waveguides, trapped image guides, coplanar-lines and microstrip lines. The theory is verified by comparison with results obtained by other methods. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.