Abstract

We propose an efficient algorithm for the simulation of densely sampled biological objects. This technique is based on an algebraic multi-grid (AMG) accelerated Crank-Nicholson (CN) finite-difference time-domain (FDTD) method. Using this scheme, simulation time step sizes are no longer limited by the Courant-Friedrich-Levy (CFL) number. A practical guideline on how to choose appropriate time-step sizes for accurate bioelectromagnetic applications is also presented. Numerical examples are used to demonstrate the effectiveness of this technique

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call