Abstract
In this study, the sixteenth-order iterative scheme of Li et al. [X. Li, C. Mu, J. Ma, C. Wang, Sixteenth-order method for nonlinear equations, Appl. Math. Com. 215 2010, 3754--3758] is considered. We increase its efficiency index from 1.587 to 1.644, by reducing the number of evaluations from six to five per iteration. This goal is achieved by providing an approximation for the first-order derivative of the function in the fourth step. Error analysis will also be studied. In the sequel, some numerical instances are given to show the accuracy of the new obtained twelfth-order technique. Therein, another objective of this paper is achieved by proposing a hybrid method for finding all the real solutions of nonlinear equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Computational Methods in Sciences and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.