Abstract
Although single-hop star networks based on wave-length division multiplexing (WDM) are attractive owing to their all-optical communication features, the throughput of such lightwave networks is limited due to the small number of available wavelengths. In this paper, a wavelength-reusable local lightwave network that consists of two interconnected WDM star networks is proposed. Based on this architecture, the lower bounds for the problems of minimizing the switching duration and the number of switching modes are derived. A transmission scheduling algorithm for this architecture to efficiently reuse the wavelengths is also proposed. The analytical result shows that the proposed scheduling algorithm always produces solutions close to the lower bounds. Simulation results show that given the same number of users and available wavelengths, the solutions (in terms of the average switching duration and the average number of switching matrices) obtained by the proposed scheduling algorithm on the interconnected WDM networks are better than the optimal solution on a single-star WDM network. In most cases, the performance improvement achieves 20 to 45%. >
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.