Abstract

For inverse synthetic aperture radar (ISAR) imaging of rapidly spinning targets, the large migration through range cells (MTRC) results in weak coherence between adjacent echoes, which makes the conventional envelope alignment method unable to be applied. By analyzing the correlation between the echoes, a translational motion compensation (TMC) method for rapidly spinning targets is proposed. Firstly, the rotation period of the target is estimated by the incoherent accumulation method for the echo signal after range compression. Secondly, Kalman filtering is performed on the shift values required to maximize the correlation coefficient of the echoes with one rotation period difference in azimuth time to obtain the relative translational motion of the radar and the target. Finally, a translational compensation function is constructed according to the results of Kalman filtering to compensate the phase items caused by translational motion. Furthermore, the covariance matrix of observation noise required by Kalman filtering is also provided. This method is used to achieve high-precision envelope alignment, and the effectiveness of the proposed method is validated by simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.