Abstract

Solving Total Least Squares (TLS) problemsAX≈B requires the computation of the noise subspace of the data matrix [A;B]. The widely used tool for doing this is the Singular Value Decomposition (SVD). However, the SVD has the drawback that it is computationally expensive. Therefore, we consider here a different so-called rank-revealing two-sided orthogonal decomposition which decomposes the matrix into a product of a unitary matrix, a triangular matrix and another unitary matrix in such a way that the effective rank of the matrix is obvious and at the same time the noise subspace is exhibited explicity. We show how this decompsition leads to an efficient and reliable TLS algorithm that can be parallelized in an efficient way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.