Abstract
A new design of a systolic array for computing the discrete cosine transform (DCT) based on prime-factor decomposition is presented. The basic principle of the proposed systolic array is that one-dimensional (1-D) DCT can be decomposed to a 2-dimensional (2-D) DCT by input and output index mappings and the 2-D DCT is computed efficiently on a 2-D systolic array. We modify Lee's input index mapping method in order to construct one input mapping table instead of three input index mapping tables. The proposed systolic array avoids the need for the array transposer that was required by earlier implementations for the prime-factor DCT algorithms, and thus all processing can be pipelined. The proposed design of systolic array provides a simple and regular structure, which is well suited for VLSI implementation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.