Abstract

The two main causes of blindness are diabetes and glaucoma. Routine diagnosis of blindness is based on the conventional robust mass-screening method. However, despite being cost-effective, this method has some problems as a human eye-disease detection method because there are many types of eye disease that are similar or that result in no visual changes in the eye image. These issues make it highly difficult to recognize blindness and control it. Moreover, the color of the macula of the spot can be very close to that of the affected macula in a variety of eye diseases, which suggests that the color of the macula spot can indicate various possibilities, rather than one. This paper discusses the shortcomings of current blindness-screening and monitoring systems and presents a feature-based blindness diagnosis approach using digital eye fundus images for the purpose of automated diagnosis of eye disorders, considering three conditions: healthy eye, diabetic retinopathy (DR), and glaucoma. As such, this paper develops a computer-aided diagnosis (CAD) method for automated detection of human blindness. The proposed approach integrates Gabor filter features, statistical features, colored features, morphological features, and local binary pattern features, then compares them with features drawn from a standard dataset of 1580 fundus images. Several classification techniques were applied to the extracted-features neural network (NN), support vector machine (SVM), naïve bias (NB). SVM classifiers show the most promising accuracy. They achieved 93.3% over the other classifiers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.