Abstract

In this paper, a deep learning-based anomaly detection (DLAD) system is proposed to improve the recognition problem in video processing. Our system achieves complete detection of abnormal events by involving the following significant proposed modules a Background Estimation (BE) Module, an Object Segmentation (OS) Module, a Feature Extraction (FE) Module, and an Activity Recognition (AR) Module. At first, we have presented a BE (Background Estimation) module that generated an accurate background in which two-phase model is generated to compute the background estimation. After a high-quality background is generated, the OS model is developed to extract the object from videos, and then, object tracking process is used to track the object through the overlapping detection scheme. From the tracked objects, the FE module is extracted for some useful features such as shape, wavelet, and histogram to the abnormal event detection. For the final step, the proposed AR module is classified as abnormal or normal event using the deep learning classifier. Experiments are performed on the USCD benchmark dataset of abnormal activities, and comparisons with the state-of-the-art methods validate the advantages of our algorithm. We can see that the proposed activity recognition system has outperformed by achieving better EER of 0.75 % when compared with the existing systems (20 %). Also, it shows that the proposed method achieves 85 % precision rate in the frame-level performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call