Abstract

The construction of highly efficient artificial light-harvesting systems in aqueous solutions is still challenging. Herein, we reported a new light-harvesting system based on the supramolecular combination of twisted cucurbit[15]uril (tQ[15]), cucurbit[10]uril (Q[10]), and an anthracene derivative (APy) with aggregation-induced emission (AIE) properties. The Q[n]-based linear supramolecular polymer, APy@tQ[15]@Q[10], was constructed through a two-step assembly strategy. Subsequently, a highly efficient artificial light-harvesting system with relatively high antenna effect and energy transfer efficiency was successfully constructed through non-covalent interactions between Rhodamine B (RB, acceptor) and the APy@tQ[15]@Q[10] (donor). The resulting system was compatible with HeLa cells and could be used for live-cell imaging in the red channel. This supramolecular assembly strategy has not only produced a highly efficient light-harvesting system but also expands the application of Q[n]s in the biomedical field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.