Abstract

A finite element-based method for accurately determining stress intensity factors (SIF) for interacting arbitrarily-shaped 3D cracks is proposed. The method utilizes the superposition principle and does not require fine meshes or singular elements. The foundation of the new method is that disturbances in an elastic stress field due to neighbouring cracks can be captured accurately by splitting the total stress at the crack tip element into two components, singular and non-singular terms. Computed results are in very good agreement with the existing numerical solutions. In addition, novel SIF solutions for various crack configurations are presented, and the conversion of size-independent solutions to the small crack model, the √area parameter model, is introduced. The proposed method can be applied to the SIF analysis for interacting cracks with various shapes often observed e.g. in additively manufactured (AM) components and the solutions will be useful for the standardization for such complicated defect configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.