Abstract

Many applications need to execute Single-Source Shortest Paths (SSSP) algorithm on each snapshot of a time-evolving graph, leading to long waiting times experienced by the users of such applications. However, these applications are often time-sensitive, the delayed computation results can lead to the loss of best decision-making opportunities. To address this problem, in this paper we propose an efficient SSSP algorithm for time-evolving graphs, called V-Grouper. The main idea of V-Grouper is to avoid the redundant computations of the same vertex in different snapshots. Our experimental results over real-world time-evolving graphs show that, due to the high similarity of consecutive snapshots, the computation results of one vertex in neighboring snapshots are equal with a high probability. At the beginning of computation, V-Grouper first divides all the versions of a given vertex in different snapshots into vertex groups, where the computation result of each version is predicted based on the aforementioned insight of neighboring snapshots having equal results. The versions of the vertex in each group have the same predicted computation result. During the computation process for each vertex group, only one version needs to participate in computation, avoiding a large number of redundant computations. Experimental results show that V-Grouper is up to 64.31× faster than the state-of-the-art SSSP algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.