Abstract

General Regression Neural Networks (GRNN) have been applied to phoneme identification and isolated word recognition in clean speech. In this paper, the authors extended this approach to Arabic spoken word recognition in adverse conditions. In fact, noise robustness is one of the most challenging problems in Automatic Speech Recognition (ASR) and most of the existing recognition methods, which have shown to be highly efficient under noise-free conditions, fail drastically in noisy environments. The proposed system was tested for Arabic digit recognition at different Signal-to-Noise Ratio (SNR) levels and under four noisy conditions: multispeakers babble background, car production hall (factory), military vehicle (leopard tank) and fighter jet cockpit (buccaneer) issued from NOISEX-92 database. The proposed scheme was successfully compared to the similar recognizers based on the Multilayer Perceptrons (MLP), the Elman Recurrent Neural Network (RNN) and the discrete Hidden Markov Model (HMM). The experimental results showed that the use of nonparametric regression with an appropriate smoothing factor (spread) improved the generalization power of the neural network and the global performance of the speech recognizer in noisy environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.