Abstract

In this paper, a discretization-based sliding mode observer (DBSMO) is proposed for the state and parameter estimation of nonlinear systems. In the DBSMO structure, an accurate discretized dynamics are derived for the state and parameter update of the sliding mode observer (SMO) instead of integration-based state update. In this way, faster converging observer dynamics are obtained. The stability properties of the conventional SMO remain the same for DBSMO. In the application presented here, first a real-time DC/DC power converter is designed with a computer interface. Then, to show the enhancement of convergence properties, conventional SMO and DBSMO-based model predictive controllers are designed and applied to control of the DC/DC power converter. Through simulation and experimental results, it is shown that the estimation performance of SMO is greatly improved so that the tracking performance is also increased, which are the main contributions of the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.