Abstract

Seawater intrusion in coastal aquifers is a major environmental problem and efficient tools are needed to assist decision making. Decision tools are often simulation models (which evaluate probable actions) combined with optimization algorithms (which search for optimum management decisions). A coupling between simulation models and optimization algorithms for management of coastal aquifers is presented. The simulation models are based on the sharp-interface approximation where the decision variables do not affect the discretized system matrix. For such problems, a transformation of the system matrix prior to optimization is proposed which supports rapid solution of the linear system of equations during the optimization stage, for different values of decision variables. The method is applied to a hypothetical simulation of a coastal aquifer on the Greek island of Santorini, where the proposed simulation-optimization coupling method is employed to maximize pumping rates subject to environmental constraints that protect the aquifer from seawater intrusion. Various packages were tested in order to investigate their efficiency in solving the linear system pertinent to the case study. The proposed method, based on coupling of equations, is found to be very efficient in terms of computational cost. In particular, for the problem examined, it is at least 50 times faster than standard methods, depending on the grid size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.