Abstract
Timely and accurate traffic speed predictions are an important part of the Intelligent Transportation System (ITS), which provides data support for traffic control and guidance. The speed evolution process is closely related to the topological structure of the road networks and has complex temporal and spatial dependence, in addition to being affected by various external factors. In this study, we propose a new Speed Prediction of Traffic Model Network (SPTMN). The model is largely based on a Temporal Convolution Network (TCN) and a Graph Convolution Network (GCN). The improved TCN is used to complete the extraction of time dimension and local spatial dimension features, and the topological relationship between road nodes is extracted by GCN, to accomplish global spatial dimension feature extraction. Finally, both spatial and temporal features are combined with road parameters to achieve accurate short-term traffic speed predictions. The experimental results show that the SPTMN model obtains the best performance under various road conditions, and compared with eight baseline methods, the prediction error is reduced by at least 8%. Moreover, the SPTMN model has high effectiveness and stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.