Abstract
Active Contour Models (ACMs) constitute a powerful energy-based minimization framework for image segmentation, based on the evolution of an active contour. Among ACMs, supervised ACMs are able to exploit the information extracted from supervised examples to guide the contour evolution. However, their applicability is limited by the accuracy of the probability models they use. As a consequence, effectiveness and efficiency of supervised ACMs are among their main real challenges, especially when handling images containing regions characterized by intensity inhomogeneity. In this paper, to deal with such kinds of images, we propose a new supervised ACM, named Self-Organizing Active Contour (SOAC) model, which combines a variational level set method (a specific kind of ACM) with the weights of the neurons of two Self-Organizing Maps (SOMs). Its main contribution is the development of a new ACM energy functional optimized in such a way that the topological structure of the underlying image intensity distribution is preserved - using the two SOMs - in a parallel-processing and local way. The model has a supervised component since training pixels associated with different regions are assigned to different SOMs. Experimental results show the superior efficiency and effectiveness of SOAC versus several existing ACMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.