Abstract

In recent years, Edge Computing (EC) has attracted increasing attention for its advantages in handling latencysensitive and compute-intensive applications. It is becoming a widespread solution to solve the last mile problem of cloud computing. However, in actual EC deployments, data confidentiality becomes an unignorable issue because edge devices may be untrusted. In this paper, a secure and efficient edge computing scheme based on linear coding is proposed. Generally, linear coding can be utilized to achieve data confidentiality by encoding random blocks with original data blocks before they are distributed to unreliable edge nodes. However, the addition of a large amount of irrelevant random blocks also brings great communication overhead and high decoding complexities. In this paper, we focus on the design of secure coded edge computing using orthogonal vector to protect the information theoretic security of the data matrix stored on edge nodes and the input matrix uploaded by the user device, while to further reduce the communication overhead and decoding complexities. In recent years, Edge Computing (EC) has attracted increasing attention for its advantages in handling latencysensitive and compute-intensive applications. It is becoming a widespread solution to solve the last mile problem of cloud computing. However, in actual EC deployments, data confidentiality becomes an unignorable issue because edge devices may be untrusted. In this paper, a secure and efficient edge computing scheme based on linear coding is proposed. Generally, linear coding can be utilized to achieve data confidentiality by encoding random blocks with original data blocks before they are distributed to unreliable edge nodes. However, the addition of a large amount of irrelevant random blocks also brings great communication overhead and high decoding complexities. In this paper, we focus on the design of secure coded edge computing using orthogonal vector to protect the information theoretic security of the data matrix stored on edge nodes and the input matrix uploaded by the user device, while to further reduce the communication overhead and decoding complexities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.