Abstract

This work aims to present a combined version of reduced candidate mechanism (RCM) and iteration-free pulse replacement (IFPR) as a novel and efficient way to enhance the performance of algebraic codebook search in an algebraic code-excited linear-prediction (ACELP) speech coder. As the first step, individual pulse contribution in each track is given by RCM, and the number N of candidate pulses is then specified. Subsequently, the replacement of a pulse is performed through the search over the sorted top N pulses by IFPR, and those of 2 to 4 pulses are carried out by a standard IFPR. Implemented on a G.729A speech codec, this proposal requires as few as 24 searches, a search load tantamount to 7.5% of G.729A, 37.5% of the global pulse replacement method (iteration=2), 50% of IFPR, but still provides a comparable speech quality in any case. The aim of significant search performance improvement is hence achieved in this work. DOI: http://dx.doi.org/10.5755/j01.itc.43.2.4946

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.