Abstract

SummaryAs a prerequisite to determine physical gene distances in barley chromosomes by deletion mapping, a reliable, fast and inexpensive approach was developed to detect terminal deletions and translocations in individual barley chromosomes added to the chromosome complement of common wheat. A refined fluorescence in situ hybridization (FISH) technique subsequent to N‐banding made it possible to detect subtelomeric repeat sequences (HvT01) on all 14 chromosome arms of barley. Some chromosome arms could be distinguished individually based on the number of FISH signals or the intensity of terminal FISH signals. This allowed the detection and selection of deletions and translocations of barley chromosomes (exemplified by 7H and 4HL), which occurred in the progeny of the wheat lines containing a pair of individual barley chromosomes (or telosomes) and a single so‐called gametocidal chromosome (2C) of Aegilops cylindrica. This chromosome is known to cause chromosomal breakage in the gametes in which it is absent. Terminal deletions and translocations in barley chromosomes were easily recognized in metaphase and even in interphase nuclei by a decrease in the number of FISH signals specific to the subtelomeric repeat. These aberrations were verified by genomic in situ hybridization. The same approach can be applied to select deletions and translocations of other barley chromosomes in wheat lines that are monosomic for the Ae. cylindrica chromosome 2C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call