Abstract
In IEEE 802.16 networks, a subscriber station (SS) could be a single mobile user, a residence house, or an office building providing Internet service for multiple customers. Considering the heterogeneity among SSs which have diverse traffic demands, in this paper, we introduce the weighted proportional fair (WPF) scheduling scheme for the Best Effort (BE) service in IEEE 802.16 networks to achieve the flexible and efficient resource allocation. We develop an analytical model to investigate the performance of WPF in terms of spectral efficiency, throughput, resource utilization, and fairness, where the Rayleigh fading channel and the adaptive modulation and coding (AMC) technique are considered. Extensive simulations are conducted to illustrate the efficiency of the WPF scheduling scheme and verify the accuracy of the analytical model. Copyright © 2009 John Wiley & Sons, Ltd. In IEEE 802.16 networks, a subscriber station (SS) could be a single mobile user, a residence house, or an office building providing Internet service for multiple customers. Considering the heterogeneity among SSs which have diverse traffic demands, in this paper, we introduce the weighted proportional fair (WPF) scheduling scheme for the Best Effort (BE) service to achieve the flexible and efficient resource allocation. An analytical model is developed to investigate the performance of WPF in terms of spectral efficiency, throughput, resource utilization, and fairness, where the Rayleigh fading channel and the adaptive modulation and coding (AMC) technique are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.