Abstract

A general framework is developed to treat inverse problems with parameters that are random fields. It involves a sampling method that exploits the sensitivity derivatives of the control variable with respect to the random parameters. As the sensitivity derivatives are computed only at the mean values of the relevant parameters, the related extra cost of the present method is a fraction of the total cost of the Monte Carlo method. The effectiveness of the method is demonstrated on an example problem governed by the Burgers equation with random viscosity. It is specifically shown that this method is two orders of magnitude more efficient compared to the conventional Monte Carlo method. In other words, for a given number of samples, the present method yields two orders of magnitude higher accuracy than its conventional counterpart.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.