Abstract

This paper described the optimized design, synthesis and application of a novel rhodamine thiospirolactam derivative as an 'off-on' fluorescent probe for the detection of Hg(2+) in aqueous samples. The 'off-on' fluorescence and color signal change of the probe is based on an Hg(2+)-triggered domino reaction which brings on the opened-ring form of the rhodamine spirolactam to regain the conjugated system of the rhodamine skeleton. In the well designed probe, the thiospirolactam serves as both Hg(2+) binding unit and electron-defect carbon centre, a phenolic hydroxyl with very strong nucleophilicity after deprotonation is chosen as the attacking unit, and a benzene ring is introduced on the linker to afford steric effects, which benefits an efficient nucleophilic reaction, with a high sensitivity towards Hg(2+). It exhibits a stable response for Hg(2+) from 1.0 × 10(-8) to 1.0 × 10(-6) M, with a detection limit of 3.0 × 10(-9) M. The response of the probe to Hg(2+) is highly selective and pH-insensitive, with a fast response time. All these unique features make it particularly favorable for cellular Hg(2+) imaging applications. It has been preliminarily used for highly sensitive monitoring of Hg(2+) levels in living cells with satisfying resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.