Abstract

AbstractRepetitive earthquake swarms have been recognized as key signatures in fluid injection induced seismicity, precursors to volcanic eruptions, and slow slip events preceding megathrust earthquakes. We investigate earthquake swarms by developing a Repeating Signal Detector (RSD), a computationally efficient algorithm utilizing agglomerative clustering to identify similar waveforms buried in years of seismic recordings using a single seismometer. Instead of relying on existing earthquake catalogs of larger earthquakes, RSD identifies characteristic repetitive waveforms by rapidly identifying signals of interest above a low signal‐to‐noise ratio and then grouping based on spectral and time domain characteristics, resulting in dramatically shorter processing time than more exhaustive autocorrelation approaches. We investigate seismicity in four regions using RSD: (1) volcanic seismicity at Mammoth Mountain, California, (2) subduction‐related seismicity in Oaxaca, Mexico, (3) induced seismicity in Central Alberta, Canada, and (4) induced seismicity in Harrison County, Ohio. In each case, RSD detects a similar or larger number of earthquakes than existing catalogs created using more time intensive methods. In Harrison County, RSD identifies 18 seismic sequences that correlate temporally and spatially to separate hydraulic fracturing operations, 15 of which were previously unreported. RSD utilizes a single seismometer for earthquake detection which enables seismicity to be quickly identified in poorly instrumented regions at the expense of relying on another method to locate the new detections. Due to the smaller computation overhead and success at distances up to ~50 km, RSD is well suited for real‐time detection of low‐magnitude earthquake swarms with permanent regional networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call