Abstract

Motivated by work in the area of dynamic magnetic resonance imaging (MRI), we develop a new approach to the problem of reduced-order MRI acquisition. Efforts in this field have concentrated on the use of Fourier and singular value decomposition (SVD) methods to obtain low-order representations of an entire image plane. We augment this work to the case of imaging an arbitrarily-shaped region of interest (ROI) embedded within the full image. After developing a natural error metric for this problem, we show that determining the minimal order required to meet a prescribed error level is in general intractable, but can be solved under certain assumptions. We then develop an optimization approach to the related problem of minimizing the error for a given order. Finally, we demonstrate the utility of this approach and its advantages over existing Fourier and SVD methods on a number of MRI images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.