Abstract

AbstractThis article presents an efficient numerical algorithm to compute eigenvalues of stochastic problems. The proposed method represents stochastic eigenvectors by a sum of the products of unknown random variables and deterministic vectors. Stochastic eigenproblems are thus decoupled into deterministic and stochastic analyses. Deterministic vectors are computed efficiently via a few number of deterministic eigenvalue problems. Corresponding random variables and stochastic eigenvalues are solved by a reduced‐order stochastic eigenvalue problem that is built by deterministic vectors. The computational effort and storage of the proposed algorithm increase slightly as the stochastic dimension increases. It can solve high‐dimensional stochastic problems with low computational effort, thus the proposed method avoids the curse of dimensionality with great success. Numerical examples compared to existing methods are given to demonstrate the good accuracy and high efficiency of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.