Abstract

Stochastic Galerkin finite element approximation of PDEs with random inputs leads to linear systems of equations with coefficient matrices that have a characteristic Kronecker product structure. By reformulating the systems as multiterm linear matrix equations, we develop an efficient solution algorithm which generalizes ideas from rational Krylov subspace approximation. Our working assumptions are that the number of random variables characterizing the random inputs is modest, in the order of a few tens, and that the dependence on these variables is linear, so that it is sufficient to seek only a reduction in the complexity associated with the spatial component of the approximation space. The new approach determines a low-rank approximation to the solution matrix by performing a projection onto a low-dimensional space and provides an efficient solution strategy whose convergence rate is independent of the spatial approximation. Moreover, it requires far less memory than the standard preconditioned conjuga...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.