Abstract

The detection and description of feature points are important components of many computer vision systems. For example, in the field of autonomous unmanned aerial vehicles (UAV), these methods form the basis of so-called Visual Odometry (VO) and Simultaneous Localisation and Mapping (SLAM) algorithms. In this paper, we present a hardware feature points detection system able to process a 4K video stream in real-time. We use the ORB algorithm—Oriented FAST (Features from Accelerated Segment Test) and Rotated BRIEF (Binary Robust Independent Elementary Features)—to detect and describe feature points in the images. We make numerous modifications to the original ORB algorithm (among others, we use the RS-BRIEF instead of classic R-BRIEF) to adapt it to the high video resolution, make it computationally efficient, reduce the resource utilisation and achieve lower power consumption. Our hardware implementation supports a 4 ppc (pixels per clock) format (with simple adaptation to 2 ppc, 8 ppc, and more) and real-time processing of a 4K video stream (UHD—Ultra High Definition, 3840×2160 pixels) @ 60 frames per second (150 MHz clock). We verify our system using simulations in the Vivado IDE and implement it in hardware on the ZCU 104 evaluation board with the AMD Xilinx Zynq UltraScale+ MPSoC device. The proposed design consumes only 5 watts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.