Abstract

The existing randomized algorithms need an initial estimation of the tubal rank to compute a tensor singular value decomposition. This paper proposes a new randomized fixed-precision algorithm which for a given third-order tensor and a prescribed approximation error bound, it automatically finds the tubal rank and corresponding low tubal rank approximation. The algorithm is based on the random projection technique and equipped with the power iteration method for achieving better accuracy. We conduct simulations on synthetic and real-world datasets to show the efficiency and performance of the proposed algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.