Abstract

This paper presents a highly efficient decomposition scheme and its associated Mathematica notebook for the analysis of complicated quantum circuits comprised of single/multiple qubit and qudit quantum gates. In particular, this scheme reduces the evaluation of multiple unitary gate operations with many conditionals to just two matrix additions, regardless of the number of conditionals or gate dimensions. This improves significantly the capability of a quantum circuit analyser implemented in a classical computer. This is also the first efficient quantum circuit analyser to include qudit quantum logic gates. Program summaryProgram title:CUGates.mCatalogue identifier: AEJM_v1_0Program summary: URL: http://cpc.cs.qub.ac.uk/summaries/AEJM_v1_0.htmlProgram obtainable from: CPC Program Library, Queenʼs University, Belfast, N. IrelandLicensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.htmlNo. of lines in distributed program, including test data, etc.: 8168No. of bytes in distributed program, including test data, etc.: 173 899Distribution format: tar.gzProgramming language: MathematicaComputer: Any computer installed with Mathematica 6.0 or higher.Operating system: Any system with a copy of Mathematica 6.0 or higher installed.Classification: 4.15Nature of problem: The CUGates notebook simulates arbitrarily complex quantum circuits comprised of single/multiple qubit and qudit quantum gates.Solution method: It utilizes an irreducible form of matrix decomposition for a general controlled gate with multiple conditionals and is highly efficient in simulating complex quantum circuits.Running time: Details of CPU time usage for various example runs are given in Section 4.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call