Abstract
Cloud data owners prefer to outsource documents in an encrypted form for the purpose of privacy preserving. Therefore it is essential to develop efficient and reliable ciphertext search techniques. One challenge is that the relationship between documents will be normally concealed in the process of encryption, which will lead to significant search accuracy performance degradation. Also the volume of data in data centers has experienced a dramatic growth. This will make it even more challenging to design ciphertext search schemes that can provide efficient and reliable online information retrieval on large volume of encrypted data. In this paper, a hierarchical clustering method is proposed to support more search semantics and also to meet the demand for fast ciphertext search within a big data environment. The proposed hierarchical approach clusters the documents based on the minimum relevance threshold, and then partitions the resulting clusters into sub-clusters until the constraint on the maximum size of cluster is reached. In the search phase, this approach can reach a linear computational complexity against an exponential size increase of document collection. In order to verify the authenticity of search results, a structure called minimum hash sub-tree is designed in this paper. Experiments have been conducted using the collection set built from the IEEE Xplore. The results show that with a sharp increase of documents in the dataset the search time of the proposed method increases linearly whereas the search time of the traditional method increases exponentially. Furthermore, the proposed method has an advantage over the traditional method in the rank privacy and relevance of retrieved documents.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Parallel and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.