Abstract

This paper presents an efficient algebraic preconditioner to speed up the convergence of Fast Multipole accelerated Boundary Element Methods (FM-BEMs) in the context of time-harmonic 3D wave propagation problems and in particular the case of highly non-uniform discretizations. Such configurations are produced by a recently-developed anisotropic mesh adaptation procedure that is independent of partial differential equation and integral equation. The new preconditioning methodology exploits a complement between fast BEMs by using two nested GMRES algorithms and rapid matrix–vector calculations. The fast inner iterations are evaluated by a coarse hierarchical matrix (H-matrix) representation of the BEM system. These inner iterations produce a preconditioner for FM-BEM solvers. It drastically reduces the number of outer GMRES iterations. Numerical experiments demonstrate significant speedups over non-preconditioned solvers for complex geometries and meshes specifically adapted to capture anisotropic features of a solution, including discontinuities arising from corners and edges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.