Abstract

The accumulation of serial remote sensing images provides plentiful data for discovering sequential spatial patterns in various fields such as agricultural monitoring, urban development, and vegetation cover. Otherwise, traditional sequential pattern-mining algorithms cannot be directly or efficiently applied to remote sensing images. In this study, we propose a pixel clustering-based method to improve the efficiency of mining spatial sequential patterns from raster serial remote sensing images (SRSI). Firstly, the images are compressed by using the Run-Length coding schema. Then, pixels with identical sequences are clustered by means of the Run-length code-based spatial overlay operation. Finally, a pruning strategy is proposed, to extend the prefixSpan algorithm to skip unnecessary database scanning when mining from pixel groups. The experimental results indicate that the method presented in this paper could extract spatial sequential patterns from SRSI efficiently. Although accurate support rates for the patterns may not be obtained, our method could ensure that all patterns are extracted with a lower time cost.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.