Abstract

Porous carbon (PC) materials with high surface area can separate electron-hole pairs and adsorb organic pollutants more effectively. A series of nanocomposites were prepared by anchoring black TiO2 nanoparticles (BTN) onto PC through a calcination process. Chemical and structural features of samples were examined by X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, powder X-ray diffraction (P-XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses. The resulting adsorption-photocatalysis synergistic effect led to a dramatically improved photocurrent for BTN@PCs, thus indicating the high photocatalytic performance toward water-soluble organic species. For instance, the degradation of tetracycline under visible light reached 90 %, which is higher than that for activated carbon doped onto BTN (57 %) without any additional agents. Moreover, the degradation of other antibiotics (such as oxytetracycline and ciprofloxacin) and methylene blue were also studied, thus showing that this system has the potential to be used for water treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.