Abstract

Path planning is an essential concern in robotic systems, and it refers to the process of determining a safe and optimal path starting from the source state to the goal one within dynamic environments. We proposed an improved path planning method in this article, which merges the Dijkstra algorithm for path planning with Potential Field (PF) collision avoidance. In real-time, the method attempts to produce multiple paths as well as determine the suitable path that’s both short and reliable (safe). The Dijkstra method is employed to produce multiple paths, whereas the Potential Field is utilized to assess the safety of each route and choose the best one. The proposed method creates links between the routes, enabling the robot to swap between them if it discovers a dynamic obstacle on its current route. Relating to path length and safety, the simulation results illustrate that Dynamic Dijkstra-Potential Field (Dynamic D-PF) achieves better performance than the Dijkstra and Potential Field each separately, and going to make it a promising solution for the application of robotic automation within dynamic environments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call