Abstract
Particle swarm optimization (PSO) as a successful optimization algorithm is widely used in many practical applications due to its advantages in fast convergence speed and convenient implementation. As a population optimization algorithm, the quality of initial population plays an important role in the performance of PSO. However, random initialization is used in population initialization for PSO. Using the solution of the solved problem as prior knowledge will help to improve the quality of the initial population solution. In this paper, we use homotopy analysis method (HAM) to build a bridge between the solved problems and the problems to be solved. Therefore, an improved PSO framework based on HAM, called HAM-PSO, is proposed. The framework of HAM-PSO includes four main processes. It contains obtaining the prior knowledge, constructing homotopy function, generating initial solution and solving the to be solved by PSO. In fact, the framework does not change the PSO, but replaces the random population initialization. The basic PSO algorithm and three others typical PSO algorithms are used to verify the feasibility and effectiveness of this framework. The experimental results show that the four PSO using this framework are better than those without this framework.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.