Abstract

When solving time-dependent partial differential equations on parallel computers using the nonoverlapping domain decomposition method, one often needs numerical boundary conditions on the boundaries between subdomains. These numerical boundary conditions can significantly affect the stability and accuracy of the final algorithm. In this paper, a stability and accuracy analysis of the existing methods for generating numerical boundary conditions will be presented, and a new approach based on explicit predictors and implicit correctors will be used to solve convection-diffusion equations on parallel computers, with application to aerospace engineering for the solution of Euler equations in computational fluid dynamics simulations. Both theoretical analyses and numerical results demonstrate significant improvement in stability and accuracy by using the new approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.