Abstract

In this paper a new dynamic over-sampling method is proposed, it is a hybrid method that combines a well known over-sampling technique (SMOTE) with the sequential back-propagation algorithm. The method is based on the back-propagation mean square error (MSE) for automatically identifying the over-sampling rate, i.e., it allows only the use of necessary training samples for dealing with the class imbalance problem and avoiding to increase excessively the (neural networks) NN training time. The main aim of the proposed method is to obtain a trade-off between NN classification performance and NN training time on scenarios where the training data set represents a multi-class classification problem, it is high imbalanced and it might request a large NN training time. Experimental results on fifteen multi-class imbalanced data sets show that the proposed method is promising.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.