Abstract

Soft structured clays usually exhibit complex behaviors, which can lead to difficulties in the determination of parameters and high testing costs. This paper aims to propose an efficient optimization method for identifying the parameters of advanced constitutive model for soft structured clays from only limited conventional triaxial tests. First, a new real-coded genetic algorithm (RCGA) is proposed by combining two new crossover and mutation operators for improving the performance of optimization. A newly developed elastic–viscoplastic model accounting for anisotropy, destructuration and creep features is enhanced with the cross-anisotropy of elasticity and is adopted for test simulations during optimization. Laboratory tests on soft Wenzhou marine clay are selected, with three of them being used as objectives for optimization and others for validation. The optimization process, using the new RCGA with a uniform sampling initialization method, is carried out to obtain the soil parameters. A classic genetic algorithm (NSGA-II)-based optimization is also conducted and compared to the RCGA for estimating the performance of the new RCGA. Finally, the optimal parameters are validated by comparing with other measurements and test simulations on the same clay. All comparisons demonstrate that a reliable solution can be obtained by the new RCGA optimization combined with the appropriate soil model, which is practically useful with a reduction in testing costs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.